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A simple classification scheme is proposed for critical points, based only on 
rank r and signature s of the (n, n)-matr ix (7 of harmonic force constants. The 
determination of r and s, e.g. by the well-known factorization G = LTgL (L: 
triangular matrix, g: diagonal matrix), has several theoretical as well as 
practical (computational) advantages over the inspection of eigenvalues of (7, 
so far used in quantum chemistry. The eigenvalues are sufficient but not 
necessary for a classification whereas rank and signature are the only necessary 
and sufficient prerequisites for solving the task. For the purpose of presenting a 
working example, by calculating only a 2 x 2 torque constant matrix, it is 
shown that the coplanar ethylbenzene is unstable in the C N D O / 2  picture. 
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1. Introduction 

Potential energy surfaces may be calculated by means of one of several quantum 
chemical approaches, based on Har t ree -Fock  and /or  configuration interaction 
methods or estimated semiempirically. It is well known that emphasis is often laid 
on the localization of critical points, i.e. points where energy as a function of 
coordinates becomes stationary. To solve the task of finding such points, the 
so-called geometry optimization methods should be used instead of calculating 
the surface point by point. The best known more advanced techniques are those 
which minimize the energy down the line of conjugate direction, the line of 
steepest descent or quasi-Newton methods, respectively. To apply the latter, it is 
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necessary to know the first partial derivatives aE/8s of the energy E with respect 
to coordinates {sci} of the molecular geometry. Analytical calculations of the 
derivatives [1, 2] increase efficiency compared with numerical calculations [3]. 
Minimizing Y~ (~E/Os 2, some of these geometry optimization methods are also 
used for calculations of transition states [4], despite the most familiar alternative 
of computing minimum energy paths or the steepest descent paths. Critical points 
on such paths are also critical points on the potential surface. It can be found that 
these points have been studied in literature [5] from several special aspects. 

In order to analyze or to classify critical points, respectively, McIver and Komor- 
nicki [4] introduced the eigenvalue calculation, i.e. the diagonalization 

U T G U  = d 

of the harmonic force constant matrix G, the entries of which read 

U is an orthogonal matrix whereas d has a diagonal form, containing the 
eigenvalues {d~} of G. To classify a critical point, the positive, negative and zero 
diagonal elements of d have then to be counted separately without consideration 
of their absolute values. Even here it may be suspected that eigenvalues provide 
more information than absolutely necessary for solving a classification problem; 
in other words, their knowledge is sufficient but may be not necessary. 

The most expansive step consists in the calculation of G. In addition, eigenvectors 
can be computed only iteratively, and therefore eigenvalues too. U can be written 
as the product of an infinite number of elementary orthogonal matrices, being 
reduced to an appropriate finite number. Therefore it is not easy to estimate a 
posteriori rounding and cut-off errors as well as their influence on the signs of the 
{d~}. Another drawback of eigenvalue calculations is the occurrence of instabilities 
with eigenvalues which satisfy 

[d~[ << [dkl. 

The possibility of achieving relevant a priori estimations of the signs of {dl} 
depends specifically on the numerical values of the entries of G. Only rarely this 
can be done uniquely by Gerschgorin's theorem. 

The geometry optimization provides us with theoretical molecular structures and 
conformations, structures of molecular complexes such as optimized solvate 
shells. Next of all it becomes necessary to decide whether these structures are 
stable or not [6]. To put it more precisely, unstable species which belong to simple 
or higher order saddle points have to be excluded. They can be recognized on one 
or more negative eigenvalues {di}. From a practical view point it is desirable to 
have a simpler approach than the calculation of eigenvalues of the force constant 
matrix. (On the other hand, it is necessary that t7 will have to be diagonalized if 
normal vibrations or related spectroscopic properties are desired.) 

It will be shown how the practical task of classification can be solved for a 
considerable part of problems knowing a marginal part of 17 and very economic- 
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ally so, especially for larger molecules. Such progress becomes possible on the 
basis of necessary and sufficient criteria, derived in the next section. 

2. Method 

Replacement of a given set of curvilinear coordinates {~:~};%1 by another 
functionally independent set {t";};~1 results in a transformation 

Q = J T G J +  ~ (~E/{)~i)a(~i)  
i = l  

of the matrix of second derivatives, where J is the Jacobian 

IS]i; = a~,/ axj  

and 

[ O ] ,  = o2 E/  ax; oxj, 

respectively. The second term on the right side of the above equation will vanish at 
critical points because all OE/O(; vanish according to the definition of such points. 
As a consequence, the nature of critical points can be understood by theory of 
quadratic functions (or so-called surfaces of second degree), which is associated 
with quadratic forms, although energy E need not be of that kind. The remaining 
special relation 

Q = j T G j  

is called a congruent transformation, realizations including mass weighting of the 
coordinates as well as the diagonalization mentioned in the preceding section. As 
stated by the well known law of inertia of quadratic forms [7], rank r and signature 
s of G remain constant under congruent transformations. In other words, if the 
matrix is brought to an arbitrary diagonal form (the diagonal need not contain the 
eigenvalues), one counts 

�89 (r + s) posi t ive elements ,  

1 ( r -  s) negat ive  elements ,  

(n - r) zero elements .  

Therefore  r, s, n of G determine uniquely the natue of a critical point: 

m a x i m u m  s = - n ,  r = n 

m i n i m u m  s = n, r =  n 

s imple  saddle  po in t  s = n - 1  r = n 

higher  order saddle  point,  s = n - k ( o r d e r k > l )  r = n .  
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Thus, in order to classify critical points, the factorization 

G=LTgL 

might be applied instead of eigenvalue calculation. L is a triangular matrix, either 
a lower or an upper one, and g is a diagonal matrix. If 

li<j = 0 l~ r = [LT]0,  

i.e. L T lower triangular matrix, and L with unit diagonal 

l~i = 1 (i = 1 . . . . .  n) 

then {gi} and {l,'k} may be calculated consecutively according to 

lik= [G]ik- ~ lijlki gk 
j = l  

i -1  
g i = [ G ] i i  E 2 

- log j. 
i=1 

Alternatively, instead of putting l. equal one, it is also possible to assign the 
numerals • 1 to gl so that 

/ G i-t 

3. Discussion 

The determination of rank and signature by factorization of G has some advan- 
tages over the eigenvalue calculation: 

(i) A very simple algorithm, making also calculations on a mini-computer 
possible 

(ii) A numerically almost stable procedure 
(iii) No iterative method 
(iv) Errors e in G can easily be analyzed by factorizing G with glj + e and also 

with g0 - e 
(v) A priori estimations of g are possible. 

A subject of practical value runs as follows: Let  the task be the elimination of 
unstable species, i.e. finding of saddle points (of simple or higher order), then the 
method can save an enormous computational effort. The gradient vector 

a E / o ~  = (OE/O~I . . . . .  OE/a~n)  T 

may be calculated analytically or numerically. The j - th  column or row (G = G T) 
of G is then obtained either by [8] 

A(OE/O~)~, 
• 

or more precise numerical differentiation than the calculation of the quotient of 
differences. Each of these rows of G can be factorized immediately, and the 
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procedure can be skipped if the first gi appears which satisfies 

g j<0 .  

Presupposing that the coordinates {~:i} have been well chosen, only a small block of 
G [concerning "weak"  (conformational) degrees of freedom] is necessary to 
identify a structure as unstable. This can be shown with a working example: The 
structure of the coplanar conformation of ethylbenzene, as shown in the figure, 
was optimized within the CNDO/2  approach. For this purpose a method was 
applied using analytically calculated first partial derivatives of the energy with 
respect to curvilinear internal coordinates [1, 2, 9, 10] along with Fletcher's 
minimization procedure VA09A [11]. The optimized geometry is also shown 
(Table 1). The second partial derivatives were estimated by calculating OE/O'r 
after addition of small increments A~-~- to the equilibrium structure, rl is a dihedral 
angle for rotation of the phenyl moiety and ~'2 describes the rotation of the methyl 
group. With 

A~-i = 20 ~ 47r/360 (i = 1, 2) 

the force or rather torque constant matrix reads (in a.u. without weighting with 
reduced moments of inertia) 

10_5[ 8 9.756 829.2] _sf 1.0 0 -65851.0]  1.0J 17.3 2819.0_1 ~ 1 0  [83.9 1.0][90 .76 0 [10.0 83.9] 

leaving out the remaining elements of the first two rows of G. (The complete 
cartesian force constant matrix of ethylbenzene is a 54 x 54 one, whereas internal 
coordinates reduce the dimension to 48 x 48.) 

The influence of the individual errors present in the numerical values of the force 
constants can easily be described quantitatively with regard to the results of 
classification. Deviations of 6 / -  G r from the zero-matrix indicate errors of such 
kind. In the context of the above example it can be proved that compensation of 
errors cannot cause changes of the signs of {gl}. Thus coplanar ethylbenzene is 
unstable in the CNDO/2  picture. (Notice that such a result agrees with experi- 
ments [12] as discussed in [13].) The same holds for substituted species as 
phenylethylamine, dopamine or related biogenic amines and their cations, as has 

Fig. 1. Coplanar model of ethylbenzene 

) 
g~ b/''~'1 
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been shown recently [13]. Other examples, concerning the stability of penta- 
coordinated compounds, are considered in [14]. There are two possibilities to 
avoid problems due to present rotational and/or translational degrees of freedom 
if cartesian or related force constant matrices have to be analyzed. 
(i) Permutations of rows and columns of 6; shift numerical problems, indicated 

by 
i-.1 

[6;]. ~ E 12gj 
,j=l 

to the end of the factorization process until only n -  k rows remain to be 
factorized, i.e. just the number of rotational and translational degrees of 
freedom (normally n - k = 6). 

(ii) Under special conditions molecule-fixed cartesian coordinates may also be set 
up easily by excluding six of the 3 N  (N: number of atoms) coordinates [2, 10]. 
In addition, a congruent transformation can also be constructed for this 
purpose, having the same effect as the exclusion of some coordinates [2, 10]. 

Table 1. Optimized geometry ( C N D O / 2 )  of the 
coplanar ethylbenzene molecule  

Internal Coordinates 
a 1.4665 a 117.14 
b 1.4687 ~ 115.63 
c a 1.3961 ya 122.64 
d a 1.3834 8 ~ 119.97 
e a 1.3841 e 119.00 
f~ 1.1180 
g 1.1273 
h 1.1210 
k 1.1202 

Cartesian Coordinates 
C - 0 . 0 5 1 2 9  0.0 0.0 
C 0.70726 - 1 . 1 7 1 0 7  0.0 
C 2.09145 - 1 . 1 6 2 6 2  0.0 
C 2.77792 0.03845 0.0 
C 2.05963 1.22233 0.0 
C 0.67737 1.19190 0.0 
H 0.18227 - 2 . 1 5 9 6 9  0.0 
H 2.65139 - 2 . 1 2 9 4 7  0.0 
H 3.89484 0.05343 0.0 
H 2.59420 2.20340 0.0 
H 0.12259 2.16393 0.0 
C - 1 . 5 2 0 0 0  0.0 0.0 
C - 2 . 1 8 8 9 8  - 1 . 3 0 4 9 9  0.0 
H - 1 . 8 8 5 3 9  0.59405 0.88570 
H - 1 . 8 8 5 3 9  0.59405 - 0 . 8 8 5 7 0  
H - 3 . 3 0 5 4 4  - 1 . 2 0 4 4 7  0.0 
H - 1 . 9 3 2 2 7  - 1 . 9 2 1 3 8  0.89950 
H - 1 . 9 3 2 2 7  - 1 . 9 2 1 3 8  - 0 . 8 9 9 5 0  

a Mean value. 
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